

International Journal of Advanced Research in Computer and Communication Engineering Vol. 4. Issue 10. October 2015

Computer-Based Comparative Analysis of BPSK versus other PSK Modulation Models

B. O. Omijeh¹, C. E. Adabanya²

Department of Electronic & Computer Engineering, University of Port Harcourt, Choba, Port Harcourt, Nigeria¹

Centre for Information and Telecommunications Engg, University of Port Harcourt, Choba, Port Harcourt, Nigeria²

Abstract: Digital communication has been experiencing a lot of tremendous growth and success. It employs digital technique of modulation and demodulation which makes it more efficient, complex and secure in long distance transmission than its analogue counterpart. Of various types of digital modulation, Binary Phase shift Keying (BPSK) technique of modulation is believed to be reliable in long distance transmission with minimal errors. In this paper, computer based analysis is been carried out to comparatively model and analyse BPSK technique along-side other M-PSK techniques over an AWGN channel paying specific attention to the bit error rates(BER), number of errors and number of samples generated by the MATLAB simulation. The MATLAB simulation results show the BPSK method proves to be a better technique where distance and error generation are top factors to be considered.

Keywords: Modulation, BPSK, BER, AWGN channel.

I. INTRODUCTION

The transit to digital modulation provides more In this paper, implementation of BPSK modulation and information capacity and unanimity with digital data higher data security, better quality services. communications, and quicker system availability. The aim of a digital communication system is to convey digital data between two or more nodes. Digital modulation techniques possess greater capacity to transport large amounts of traffic than analogue modulation technique[1]

In radio communications this is usually achieved by adjusting a physical characteristic of a sinusoidal carrier, either the frequency, phase, amplitude or a combination thereof by a digital signal usually "1"s and "0"s. This is performed in real systems with a modulator at the transmitting end and a detector at the receiving end [2]

The modulator imposes the physical change to the carrier and a demodulator detects the resultant modulation on reception of various Digital modulation techniques [3] BPSK is one of the simplest, most robust of all the PSK techniques .The BPSK modulation and demodulation is designed using MATLAB Simulink [4].

demodulation over an AWGN channel has received considerable attention due to their low error rate, high flexibility, low cost, and high speed.

II. RELATED WORKS

[5] In their paper, presented why BPSK is normally used for high speed data transfer application, and that it provides a 3dB power advantage over the BASK modulation technique and is robust and simple in implementation. It also provides small error rates than any other systems.

[6] in his paper compared the Bit Error Ratio performance when the input of Reed-Solomon (RS) Encoder- Decoder is Integer and Binary to the M-ary frequency shift keying (MFSK) under AWGN, multipath Rayleigh and Rician fading channels. The results show the binary input RS encoder has best BER performance under Rayleigh fading when the value of M is 2.

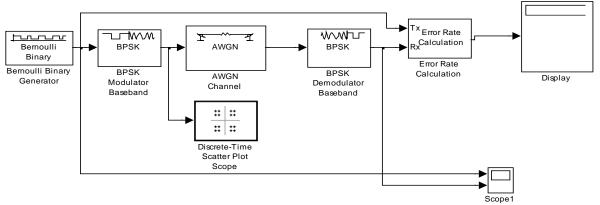


Fig. 1: A TYPICAL BPSK MODEL (Math works, 2009)

International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 10, October 2015

[7] In their paper, the Design of Digital Modulators: • BASK, BPSK and BFSK using VHDL, demonstrated the functionality of these digital modulators through simulations using the Quartus II software and • experimental measurements of the real-time modulated signal via an oscilloscope [8][9][10].

III. METHODOLOGY

The following steps were taken to analyse the BPSK • model alongside the other M-PSK models;

Simulation was run in intervals of 50 Matlab seconds

- Records were taken for Error rate, Number of Errors generated and Number of Samples for the 2-PSK, 4-PSK, 8-PSK and 16-PSK models
- The bpskdoc model in Simulink was enabled and duplicated into three more models replacing the BPSK modulator/demodulator with the 4-PSK, 8-PSK and 16-PSK modulators/demodulators as shown in Fig. 2 below
- In each model, the option 'stop simulation' was disabled to allow for runtime analyses in the Bit error rate display.

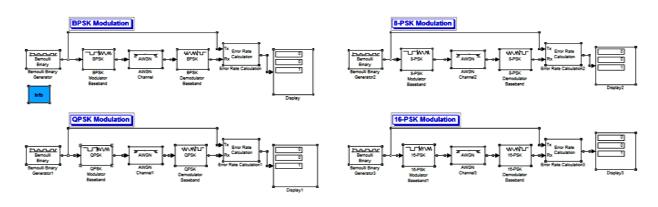


Fig2: Comparative Models for BPSK versus M-PSK

IV. RESULTS AND DISCUSSION

modulation Technique was found to be very low and 16-PSK modulation model at increasing simulation stable over long sample times while the other MPSK time techniques had higher and fluctuating values over the same periods. These results are noted in Table .1.

Fig .3 shows the relationship in BER of BPSK in comparison to other MPSK.

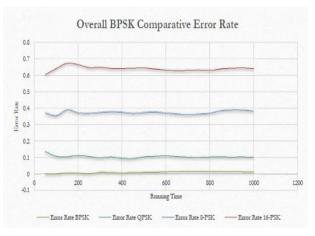


Fig. 3: Overall BPSK Comparative Error Rate

The other MPSK techniques generated errors fasters and in steady growth while the BPSK demonstrated a steady flow generation of errors over long sampling periods. These results are noted in Table 2.

The BER (Bit error rate) value for the BPSK TABLE 1: BER results for BPSK, QPSK, 8-PSK and

Error Rate	DDCK	ODCK	0.001/	
Run Time	BPSK	QPSK	8-PSK	16-PSK
50	0	0.1373	0.3725	0.6078
100	0	0.1089	0.3564	0.6436
150	0.006623	0.106	0.3907	0.6755
200	0.004975	0.1144	0.3731	0.6667
250	0.001195	0.1076	0.3705	0.6494
300	0.009967	0.09967	0.3754	0.6512
350	0.008547	0.1054	0.3789	0.643
400	0.007481	0.09726	0.3766	0.6434
450	0.00869	0.09534	0.3703	0.6452
500	0.00998	0.1058	0.3752	0.646
550	0.01089	0.1089	0.3775	0.640
600	0.01331	0.1115	0.3727	0.6356
650	0.01536	0.1075	0.3671	0.6313
700	0.01569	0.1041	0.3623	0.6334
750	0.01598	0.1025	0.3662	0.636
800	0.01496	0.1049	0.3706	0.633
850	0.0141	0.1058	0.3854	0.641
900	0.01443	0.1043	0.3896	0.644
950	0.01367	0.1052	0.3891	0.646
1000	0.01299	0.1029	0.3836	0.6424

International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 10, October 2015

TABLE 2: No of errors generated from BPSK, QPSK,8-PSK and 16-PSK modulation model at differentsimulation time

Journal of Electronic , Communication and Computer Engineering (IJECCE), Vol $5,\,\rm N0.\,3,\,2013$

No of Errors							
Run Time	BPSK	QPSK	8-PSK	16-PSK			
50	0	7	19	31			
100	0	11	36	65			
150	1	16	59	102			
200	1	23	75	134			
250	3	27	93	163			
300	3	30	113	196			
350	3	37	133	226			
400	3	39	151	258			
450	4	43	167	291			
500	5	53	188	324			
550	6	60	208	353			
600	8	67	224	382			
650	10	70	239	411			
700	11	73	254	444			
750	12	77	275	478			
800	12	84	297	507			
850	12	90	328	546			
900	13	94	351	581			
950	13	100	370	615			
1000	13	103	384	643			

V. CONCLUSION

From the Analysis of BPSK modulation versus the 4-PSK, 8-PSK, and the 16-PSK methods, it was found that the BPSK method demonstrated very low error generation and Bit error rate potential.

Therefore, the BPSK method proves to be a better technique where distance and error generation are top factors to be considered.

REFERENCES

- Haykin, Digital Communication, John Wiley & Sons, Inc., Replika Press Pvt. Ltd., N. Delhi, India, 2000-2001
- [2] Park, J (1978), On binary DPSK detection, IEEE Trans.Communication, [online] Vol26 No 4,(April).pp484 -486.
- [3] Sneda ,R & Pankaj A.(2014),Performance Evaluation of different modulation Techniques on WCDMA For different multipath fading channels.Inter.J.Eng.Res.Tech.Vol1 No2.pp65-69.Available at: www.ijert.com
- [4] Shruti, H & Pawar, M.(2014), BPSK Modulation Technique for Digital Communication. IJAATER. [Online]. pp52-54.
- [5] D.K.Sharma¹, A. Mishra² & Rajiv Saxena³, TECHNIA International Journal of Computing Science and Communication Technologies, VOL. 3, NO. 1, July 2010. (ISSN 0974-3375)
- [6] Vaidya (2013),
- [7] Neha, P & Ajay, P. (2013).Design of Digital Modulators. International journal of Advanced Research in computer Science and Software Engineering.[online] Vol 3.(January).p382-386.Available from :www.ijarcsse.com.
- [8] Sanjui,M & Tripathi,M.(2013),BPSK and QPSK Modulation Techniques with optimum Tree based interleaver in iterative IDMA Systems.IJCSN [online]Vol 1 No 2..(pp9-15)
- [9] Omijeh.B.O and Biebuma.J.J(2013). Traffic Modelling For Capacity Analysis of CDMA Networks using Lognormal Approximation Method, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Volume 4, Issue 6 (Jan. - Feb. 2013), PP 42-50
- [10] Omijeh, B.O, R. Okinege, R.Ochi (2013): "Traffic Modelling for capacity analysis of CDMA Networks using Gaussian, International